Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Bull Math Biol ; 84(4): 47, 2022 02 26.
Article in English | MEDLINE | ID: covidwho-1712322

ABSTRACT

In order to understand how Wuhan curbed the COVID-19 outbreak in 2020, we build a network transmission model of 123 dimensions incorporating the impact of quarantine and medical resources as well as household transmission. Using our new model, the final infection size of Wuhan is predicted to be 50,662 (95%CI: 46,234, 55,493), and the epidemic would last until April 25 (95%CI: April 23, April 29), which are consistent with the actual situation. It is shown that quarantining close contacts greatly reduces the final size and shorten the epidemic duration. The opening of Fangcang shelter hospitals reduces the final size by about 17,000. Had the number of hospital beds been sufficient when the lockdown started, the number of deaths would have been reduced by at least 54.26%. We also investigate the distribution of infectious individuals in unquarantined households of different sizes. The high-risk households are those with size from two to four before the peak time, while the households with only one member have the highest risk after the peak time. Our findings provide a reference for the prevention, mitigation and control of COVID-19 in other cities of the world.


Subject(s)
COVID-19 , Epidemiological Models , Quarantine , COVID-19/epidemiology , COVID-19/prevention & control , China/epidemiology , Cities , Communicable Disease Control , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL